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A numerical approach to modeling a biochemical system that includes processes
with significantly different time scales has been developed within the Virtual Cell
environment (J. Schaffet al., 1997,Biophys. J.73, 1135). The key features of the
algorithm are time splitting of slow and fast processes and pseudo-steady approxi-
mation based on stoichiometry analysis. We apply the method to study the effect of
fast calcium buffering on the properties of self-sustaining calcium waves in living
cells. Numerical results for one-dimensional traveling waves in one-variable bistable
models are compared with theoretical predictions. The effect of a mobile buffer on
calcium waves appears to strongly depend on buffer affinity and system excitability.
In systems with low excitability, the buffer can stop the traveling wave and make it
move in the opposite direction, which means physiologically that the wave becomes
self-extinguishing. We then consider traveling waves in a more realistic two-variable
model (the Li–Rinzel model). This system exhibits a new feature: in the mode of
low excitability, under certain conditions, it undergoes bifurcation with the buffer
concentration as a bifurcation parameter. As a consequence, for some buffer concen-
trations, there exist two stable traveling waves with very different velocities. Finally,
to study how a fluorescent indicator, which acts as a mobile buffer, might affect the
fertilization calcium waves in eggs, we run three-dimensional simulations within
the Li–Rinzel model using realistic parameters, geometry, and initial conditions.
The results indicate strong interaction of a fluorescent dye with initiating calcium
spikes. As a result, a fluorescent dye added to visualize calcium dynamics in a cell
causes a delay in wave formation and, at sufficient concentration, can prevent a
wave. c© 2000 Academic Press
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1. INTRODUCTION AND BIOLOGICAL BACKGROUND

A general computational framework for modeling cell biochemical processes, the “Virtual
Cell,” is being developed at the National Resource for Cell Analysis and Modeling at the
University of Connecticut Health Center [1, 2]. It is intended to be a tool for experimentalists
(as well as theorists) to test their hypotheses and models. Models are constructed from
biochemical and electrophysiological data mapped to appropriate subcellular domains in
images obtained from a microscope. Chemical kinetics, membrane fluxes, and diffusion are
thus coupled and the resultant reaction-diffusion equations with specified membrane jump
conditions and boundary conditions are solved numerically within the given one-, two-, or
three-dimensional domains. The results are mapped back to experimental images and can be
analyzed by applying the arsenal of image processing tools that is familiar to a cell biologist.

It is generally true that a biological process will be composed of a set of events with vastly
different time scales. Unless special precautions are taken in numerical calculations, the
fast events will necessitate a small time step for their resolution, in order to avoid numerical
instability. Since the total time for the slow processes to finish is very long, this makes the
computations expensive. Thus, one has to address this issue when developing a general-
purpose tool for cell modeling. We first faced this problem when we applied the Virtual
Cell to modeling calcium dynamics in neuroblastoma cells [3, 4]. In this case, calcium
buffering—the calcium interaction with molecular species that have calcium binding sites—
is thought to be a much faster process than the other key elements, calcium diffusion and
fluxes from (and back to) the internal calcium stores. In 1994 Wagner and Keizer developed
the rapid buffer approximation to deal with this problem [5]. They used a pseudo-steady
approximation to exclude “fast variables” and derived an effective transport equation for
calcium. This equation, in general, is no longer of a reaction-diffusion type. Thus, we
could not use this approach in our general framework directly because (1) it would require
a user to do preliminary analytical work, which can often be quite involved, and, more
importantly, (2) in each particular case the final equations might be of different forms and
require different algorithms. What we need is a general, purely numerical, approach that can
be applied to any reaction-diffusion system with fast subsystems, no matter how complex
its reaction scheme is.

We have developed such an approach using the well-known idea of time splitting [6]. In
our case, time splitting involves updating variables in two steps, separately for slow pro-
cesses and for fast reactions. Thus, we always remain within a general reaction-diffusion
scheme. In the current approach, to update variables in fast reactions, we use a pseudo-steady
approximation; i.e., we replace ordinary differential equations with algebraic equations that
reflect rapid equilibrium of fast reactions. At this point care must be taken in choosing
a number of independent algebraic equations equal to the number of unknowns. This is
achieved with stoichiometry analysis [7, 8] that results in a coupled system of nonlinear al-
gebraic equations and a set of linear constraints, corresponding to conservation relationships
within the fast subsystem. It is important that the values of “fast” invariants are updated at
each time step using results from solving “slow” equations. The stoichiometry analysis is
performed automatically within our framework after a user specifies which reactions are
considered fast. After the system of nonlinear equations is determined, we use Newton
iterations to solve it. Solutions from the previous time step serve as a good initial guess and
ensure rapid convergence of iterations. Symbolic differentiation is automatically invoked
to determine the Jacobian matrix of the nonlinear system.
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The pseudo-steady approximation has its scope of applicability, as illustrated by the
example in Section 2. Obviously, it gives accurate results if the ratio of characteristic times
of fast and slow processesτ fast/τ slow is sufficiently small during the transient. In fact, our
results indicate that the relative error introduced by the approximation is roughly of the
order ofτfast/τ slow. However, in nonlinear systems this ratio may vary in the process and
therefore the inequalityτ fast/τ slow¿ 1 might be violated. In formal singular perturbation
language, there might be interior layers in the solutions with rapid change of variables. In
case one would like to resolve the interior layers, more accurate approaches should be used.
We still can take advantage of time splitting because it allows us to decouple fast and slow
parts of a system and apply different techniques for their treatment. Staying within this
framework, we can now treat the reaction terms with a stiff solver instead of pseudo-steady
approximation. Still, in many practical applications the species concentrations do not change
rapidly after the initial fast transient, and the pseudo-steady approximation works well. One
of the practical conveniences of the pseudo-steady approximation is that it does not require
the values of kinetic constants of fast reactions. All that is required are equilibrium constants
which are usually available from experimental data.

In this paper we apply our approach to study the effect of fast mobile buffers on calcium
waves in bistable systems. Calcium oscillations and waves play an important role as a
prerequisite for triggering various physiological processes such as hormone secretion, cell
division, muscle contraction, etc. [9]. One of the key elements of intracellular calcium
dynamics is calcium release from the endoplasmic reticulum (ER), the internal calcium
store, through calcium channels that can be activated by cytoplasmic calcium as well as
by other signaling molecules that are present in the cytoplasm, such as inositol-1,4,5-
triphosphate (InsP3). Two other components of the calcium flux across the ER membrane
are direct leak through the membrane and calcium uptake by molecular pumps—the proteins
embedded in the membranes that pump calcium ions back into the ER against its gradient (of
course, to do that, they consume energy). The calcium concentration in ER is several orders
of magnitude higher than that in the cytoplasm; therefore, for many purposes the store can
be considered to have infinite capacity. ER has very complex irregular geometry [10]. Being
a continuous closed compartment, it fills a cell with generally non-uniform density while
occupying only approximately 15% of the cell volume. In a continuous approximation,
it can be modeled by calcium sources and sinks continuously distributed with a certain
density throughout a cell and characterized by certain rates. When combined with calcium
diffusion, they give rise to a reaction-diffusion type equation [11]

∂c

∂t
= Dc∇2c+ f, (1.1)

wherec is the calcium concentration,Dc is the calcium diffusion coefficient, andf =
Jchannel+ Jpump+ Jleak is the rate of change of calcium concentration due to fluxes through
calcium channels, pumps, and because of leak. Calcium fluxes across the outer membrane
may also influence calcium dynamics and can be taken into account through the appropriate
boundary conditions.

Calcium buffering is another factor which is now widely recognized to have a strong
impact on the overall intracellular calcium dynamics [12, 13]. Consider the case of a single
mobile buffer interacting with calcium according to the reaction

Ca+ B ⇀↽ CaB, (1.2)
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whereB andCaBdenote the free and bound forms of the buffer, respectively. Assuming
zero flux boundary conditions for the buffer, same diffusion coefficients for both forms
of the buffer, and the total buffer concentrationbt = [B]+ [CaB] being spatially uniform
initially, bt is then conserved at each spatial point for anyt > 0. Here, [B] and [CaB] are
the concentrations of the free and bound forms of the buffer, respectively. This system is
described by the set of equations

∂c

∂t
= Dc∇2c+ f + R,

∂b

∂t
= Db∇2b− R, (1.3)

R = −konc(bt − b)+ koffb,

whereb= [CaB], Db is the buffer diffusion coefficient, andkon andkoff are the reaction
kinetic constants. As we mentioned above, calcium buffering is considered to be much faster
than other components affecting calcium dynamics, so the pseudo-steady approximation can
be applied. In addition to endogenous buffers (mainly proteins with calcium binding sites)
that are always present in a cell, there is another reason that makes the study of the buffer
effect on calcium dynamics very important. In experimental studies, calcium dynamics is
visualized by loading a cell with a fluorescent indicator that acts as a high affinity mobile
buffer. It is therefore crucial to know to what extent the exogenous buffer (a fluorescent
indicator) can distort the original pattern.

We chose bistable systems for our study (Fig. 2a in Section 3 shows the typical behavior
of the function f (c) in Eq. (1.1) for one-variable systems) because they are known to
maintain stable self-propagating waves [14]. Moreover, bistability is thought to be essential
in the phenomenon of fertilization calcium waves [15]. The issues of existence and speed of
traveling waves in bistable models in the presence of rapid mobile buffers were considered in
a recent paper [16] (see also [14]). The authors of [16] proceeded with the calcium transport
equation derived in [5]. Using a clever nonlinear transformation, they found the condition
for the existence of traveling waves with the domination of high steady state concentration
in the presence of a rapid buffer. However, as we show in this paper, their hypothesis,
that the low buffer affinity limit yields a universal equation describing the buffer effect on
the wave speed, does not hold. Our results indicate that the effect of calcium buffering on
traveling waves in bistable systems can be drastically different depending on buffer affinity
and system excitability. The latter is characterized by how close the unstable steady state
concentration is to that of the lower stable steady state: the closer they are, the more excitable
is the system. In particular, there is a threshold in system excitability above which traveling
waves cannot be eliminated by a mobile buffer no matter how aggressive its characteri-
stics are.

We now outline the structure of this paper. In Section 2 we describe our algorithm. We
use a simple example of two-dimensional diffusion of a calcium spike in the presence of
a mobile buffer to illustrate the convergence of the method and the applicability of the
pseudo-steady approximation. In Section 3 we apply our algorithm to study the effect of a
rapid mobile buffer on traveling waves in the simple one-variable models [16, 17]. Although
these models are oversimplified compared to the physiologically relevant mechanisms, they
are exactly solvable in the absence of buffers and there are also some asymptotic results
in the case of rapid buffers. Thus, we can validate our numerical results and verify some
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other theoretical predictions. In Section 4 we consider a more realistic two-variable model
that becomes bistable for some parameter sets. Most of the qualitative conclusions drawn
in the previous section appear to hold in this case as well. We also found a new feature:
for certain parameter sets in the low excitability regime, the system undergoes bifurcation
with the total buffer concentration as a bifurcation parameter. Thus, for some total buffer
concentrations, there exist two stable traveling waves with very different velocities. As
a consequence, in this case the system may sometimes exhibit a discontinuous “phase”
transition from stable fast to stable slow waves as the total buffer concentration increases.
This transition precedes the threshold beyond which no traveling wave with dominating
high steady state concentration exists. Finally, in Section 5 we present the results of three-
dimensional simulations of fertilization calcium waves. They illustrate the possible effect
of a fluorescent indicator. The simulations have been run on realistic geometry with the
realistic set of parameters and initial conditions. The results indicate strong interaction of
buffers with initiating calcium spikes. The mobile buffers cause a delay in wave formation
and, at a sufficient concentration, can prevent a wave.

2. NUMERICAL ALGORITHM

In this section, we document our algorithm designed for the reaction-diffusion systems
containing a subsystem of fast reactions where characteristic times differ by two or more
orders of magnitude. The idea of our algorithm is to combine time splitting [6], which is
necessary for the separation of fast and slow reactions, with the pseudo-steady approxi-
mation applied to the fast subsystem. In many applications (see discussion in the previous
section) the pseudo-steady approximation is well suited for obtaining a good quantitative
solution by assuming the fast reactions are in equilibrium at all time after the initial rapid
transient.

Let ui , i = 1, . . . ,n, be the concentrations of various species involved in the dynamics
and governed by a system of reaction-diffusion equations,

∂ui

∂t
= Di∇2ui + Ri , i = 1, . . . ,n, (2.1)

with initial conditions

ui (x, 0) = u0
i (x), (2.2)

and different boundary conditions for different cases that we study. HereDi is the diffusion
coefficient of thei th species. The effect of all the reactions on thei th species is represented
by the source termRi , which is a function ofu1, . . . ,un.

Assume that there arem different reactions with ratesν j , j = 1, . . . ,m, taking place
among the various species. Usually eachν j is a nonlinear function of the concentrations
of the species participating in thisj th reaction. Thus withαi j being the integer-valued
stoichiometry matrix [8], which represents how many molecules of thei th species are
produced (the positive sign) or consumed (the negative sign) due to thej th reaction, we
have

Ri =
m∑

j=1

αi j ν j . (2.3)
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Without loss of generality, let the firstk reactions be fast with ratesν1, . . . , νk, k≤m,
respectively, while the remainingm− k reactions are slow with ratesνk+1, . . . , νm, respec-
tively. Diffusion is assumed to be a slow process which is usually the case in the length
scale of interest.

In our algorithm, a typical time-step, say fromT to T +1t , is advanced in two stages.
In both stages, the equations are coupled due to the reaction rateν j , j = 1, . . . ,m.

StageI, due to fast reactions. We solve

∂ui

∂t
=

k∑
j=1

αi j ν j , i = 1, . . . ,n, (2.4)

with given initial conditionui (x, T), i = 1, . . . ,n, x⊂R3. Its actual implementation in-
volves the pseudo-steady approximation and will be discussed below. We let their solution
beũi (x), i = 1, . . . ,n, after a time of1t .

StageII, due to slow reactions and diffusion. We solve

∂ui

∂t
= Di∇2ui +

m∑
j=k+1

αi j ν j , i = 1, . . . ,n, (2.5)

with the same boundary conditions as for the governing equations and initial conditions
ũi (x) from the results in Stage I. The result that we obtain after a time of1t is our numerical
approximation toui (x, T +1t).

We then repeat Stages I and II to compute the solution at successive times.
We now describe the implementation of Stage I in the algorithm. In Eqs. (2.4), it involves

then× k stoichiometry matrixα( f )≡αi j , 1≤ i ≤ n, and 1≤ j ≤ k. Assume the rank of the
matrixα( f ) to ber ; thereforer ≤ min(n, k). Its left null spaceN ((α( f ))T )has a dimension of
n− r , with a basis{l1, . . . , ln−r }⊂Rn. Using (2.4), it is then easy to verify that∂

∂t (l i · u)= 0,
whereu= (u1, . . . ,un)

T . Hence for fixedx,

n∑
j=1

βi j u j = Ii , i = 1, . . . ,n− r, (2.6)

whereβi j is the j th component of the vectorl i , and Ii is constant during this time step
(but depending onx), which should be updated from the initial conditions in Stage I.
Equations (2.6) represent all the conservation relationships among the species with respect
to fast reactions.

Let A be a non-singularn× n matrix such that its lastn− r columns are composed of
{l1, . . . , ln−r }. (For example, its firstr columns can be composed of a basis{a1, . . . ,ar }⊂Rn

for the column space ofα( f ). Such a basis can be computed. However, we will employ a
different choice below.) Therefore, Eqs. (2.4) are equivalent to

n∑
i=1

Aip
∂ui

∂t
=

n∑
i=1

k∑
j=1

Aipαi j ν j , p = 1, . . . ,n, (2.7)

since we can get Eqs. (2.4) from (2.7) and vice versa. The lastn− r equations correspond to
Eqs. (2.6). We now apply the pseudo-steady approximation to the firstr equations assuming
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the fast reactions to be in rapid equilibrium; thus we will ignore the time derivative on the
left hand side. Hence the firstr equations can be approximated by

k∑
j=1

α̃pjν j = 0, p = 1, . . . , r, (2.8)

whereα̃pj ≡
∑n

i=1 Aipαi j . In summary, in Stage I we solve Eqs. (2.6) and (2.8) to update
ui , i = 1, . . . ,n.

Our choice of matrixA makes it trivial to determine ˜αpj : we just have to pickr rows of
matrixα( f ) that correspond to “independent” variables. It also simplifies programming and
makes the overall algorithm more efficient. The construction of the matrixA that we use
is described below. Of course, such a choice is for convenience only and does not alter the
final solutions. In fact, it can be rigorously proved that the solution to Eqs. (2.6) and (2.8) is
independent of the choice of the matrixA, so long as its lastn− r columns are composed
of {l1, . . . , ln−r } and it is non-singular (see Appendix A).

Since the rank of the matrixβ in the linear equations (2.6) is alwaysn− r , we can find
r free variables among all theui so that the remainingn− r of them can be expressed as
a linear combination of such free variables by performing Gaussian elimination. The free
variables can be read off from the structure of the echelon matrixU resulting from the
Gaussian elimination. Putting such relations back into Eqs. (2.8), we obtain a system of
r nonlinear algebraic equations for ther independentui . We solve this nonlinear system
using the Newton’s method, with a good initial guess being the initial conditions for such
ui in Stage I.

We now describe how we construct the matrixA. Let the location of the free variables
be i = i1, i2, . . . , i r . For eachi j , j = 1, . . . , r , we construct a unit vector inRn whose
components are zero except at thei j position where we assign a value of 1. For example,
if i1= 2, then we construct the vector(0, 1, 0, . . . ,0)T . It is easy to see that this set of
r vectors,{bT

1 , . . . ,b
T
r }, and then− r rows of the matrixU form n linearly independent

vectors, since together they form an× n upper triangular matrix with non-zero diagonal
entries. But the row space ofU is the same as the row space of the matrixβ, which is
also equal to the left null space ofN ((α( f ))T ); therefore{b1, . . . ,br } and{l1, . . . , ln−r }
are linearly independent. Hence{b1, . . . ,br } can be employed in the firstr columns in the
construction of the matrixA, giving

A = (b1, . . . ,br , l1, . . . , ln−r ). (2.9)

Correspondingly, the matrix ˜α reduces to a choice of the(i j )th, j = 1, . . . , r , rows of the
matrixα( f ).

In the implementation of Stage II, any standard algorithm can be employed. Currently
we use a finite volume method [18] for the implicit time discretization of the diffusion term,
and an explicit treatment of the nonlinear reactions in Eqs. (2.5). This gives us numerical
stability and avoids the solving of nonlinear equations in this step. By itself, the local
discretization error in this step is first order in time and second order in space.

There are two additional sources of error for this time splitting method. First, we have
broken down the original governing equations in a typical time step1t into two simpler
steps (Stages I and II), each with simpler Eqs. (2.4) and (2.5), respectively. Even if we
solve these simpler equations exactly, we already invoke the time splitting error. The second
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source of error comes from the pseudo-steady approximation. As we discussed in Section 1,
such approximation gets better when there is a substantial difference in characteristic times
between fast and slow processes. In our actual numerical experiments, numerical stability
and convergence are observed, with an overall accuracy of first order in time.

This algorithm has been implemented as a part of the Virtual Cell software. Its develop-
ment has been motivated by the requirement to fully automate the treatment of fast reaction
kinetics within the Virtual Cell modeling environment. To run a simulation with the Virtual
Cell, a physiological model (reactions, diffusion, and membrane fluxes topologically or-
ganized by cell compartments), a geometric model, which represents anatomical features,
membrane locations, and the domain size, and a set of simulation specific requirements (ini-
tial conditions, boundary conditions, external stimulus, and the selection of “fast” reactions)
have to be specified (http://www.nrcam.uchc.edu/). From this specification, a mathematical
model is automatically constructed including simplifications based on mass conservation
relationships and, if necessary, the pseudo-steady approximation discussed in this paper.
A major feature of the Virtual Cell design is that the description of the physiology is de-
coupled from the choice of an appropriate mathematical treatment for a given simulation,
which depends (among other things) on the spatial and time scales of the physiological
questions being asked.

The biochemical reactions, anatomical features, geometry, and simulation specification
are graphically edited within the Virtual Cell Java applet [19] running within a web browser.
All that a user has to do to invoke the “fast” algorithm is specify in the reaction editor the reac-
tions that are considered fast. The time splitting, stoichiometry analysis, and pseudo-steady
approximation are then automatically performed and, for spatial problems, the resulting
system of partial differential and algebraic equations is sent to our solver environment on
a remote server, where code is generated and linked into existing C++ numerical libraries.
In the case of a non-spatial (compartmental) problem, the system of ordinary differential
and algebraic equations is solved within the web browser and is accompanied by a local
sensitivity analysis. In either case, the results are then displayed within the applet.

We now illustrate how our method works with a simple example of two-dimensional
diffusion of a calcium spike in the presence of a mobile buffer, a situation when calcium
is spontaneously released from a channel (a calcium “spark” [20]) or injected at a specific
location in the cytoplasm loaded with a fluorescent dye. The system is described by Eqs. (1.3)
with f ≡ 0. Thus in this simple case, we have two variablesu1= c andu2= b coupled
by one fast reaction. Using our approach, we perform time splitting and pseudo-steady
approximation that result in a “slow” subsystem,

∂c

∂t
= Dc∇2c,

(2.10)
∂b

∂t
= Db∇2b,

and a “fast” subsystem consisting of a “fast” invariant (see (2.6)),

c+ b = I , (2.11)

and a nonlinear algebraic equation,

c(bt − b) = Kb, (2.12)



194 SLEPCHENKO, SCHAFF, AND CHOI

where K ≡ koff/kon is the dissociation constant. The fast and slow subsystems are then
solved in two steps as described above.

To test the validity of our algorithm, we will compare its numerical results with those
from a regular algorithm which does not perform time splitting and uses a small time step
all the time to resolve the fast reaction (this type of algorithm is employed in Stage II of our
approach). Both methods are used to run simulations on a two-dimensional square domain
with dimension(−L , L)× (−L , L) with initial conditions

c(x, 0) = c0+ c1

σ
√

2π
exp

(
− |x|

2

2σ 2

)
, b(x, 0) = btc(x, 0)

K + c(x, 0)
, (2.13)

and zero flux boundary conditions for both species.
In this example, we use the system of units which is often convenient in physiological

applications. In this system, length is measured in microns (µm), time in milliseconds (ms),
and concentration in micro molars (µM, 1 M= 1 mole/litre). In these units, the parameter set
employed in the simulations is as follows:L = 10,Dc= 5× 10−3, Db= 5× 10−2, K = 0.24,
σ = 0.5,c0= 0.05,c1= 10.0, andbt = 10.0. We will use different values forkon thus varying
the characteristic time of the fast reaction.

We first demonstrate the convergence of the regular algorithm. For that matter, we run
simulations for the relatively largekon= 0.25 (the numerical convergence for smallerkon is
easier to achieve), with the decreasing time step1t and mesh size1x such that1t ∝ (1x)2.
A spatial mesh size of1xi = h/2i , i = 0, 1, 2, and the corresponding time step1ti are used
to determine the solutionUi (x) of eitherc or b at some timeT . Since we expect the error
to beO(1t)+O((1x)2), it can be shown that the ratio

r ≡ ‖U0−U1‖2
‖U1−U2‖2 (2.14)

should be close to 4 whenh is small. In Table I we present the results for this ratio obtained
with h= 0.5 and1t0= 0.01,1t1= 0.0025, and1t2= 0.000625. The good agreement with
the predicted value confirms the expected convergence of the general algorithm.

From now on, we regard the numerical solutions computed in this way using1x= 0.5
and1t = 0.01 as the standard solutions (we estimate that forT ≥ 5, they are accurate
within 0.7%). To study the effect of time splitting and pseudo-steady approximation, we
then compare these solutions for variouskon to the one obtained using our fast algorithm
for the same discretization parameters. Note that when using the pseudo-steady approxi-
mation, we need onlyK and do not require a value forkon. In this example, the charac-
teristic time of the fast reaction can be estimated asτfast= 1/(konbt ) while time scales of
slow diffusion areτc= σ 2/Dc and τb= σ 2/Db for calcium and the buffer, respectively.

TABLE I

Ratio r of Eq. (2.14) for the Variablesc and b at Varying Time

Time,T (ms) Variablec Variableb

10 4.54539 4.41447
20 4.23496 4.20957
30 4.15328 4.14222
40 4.11376 4.10754
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FIG. 1. Results of the “full” solution forc(x, t) obtained with increasing reaction rateskon, as compared to
those of the “fast” algorithm (solid lines). (a)x= (1, 0); (b) x= (1.5, 0); (c) x= (1.5, 1.5).

As discussed in Section 1, the pseudo-steady approximation should give accurate results if
τfast¿ min(τc, τb), which leads tokonÀ max(Dc, Db)/(btσ

2)= 0.02. In Fig. 1 we present
the time history ofc(x, t) for somex. We see that askon increases, the standard solutions
(computed using the same1x and1t) approach the pseudo-steady approximation solution.
In fact, whenkon≥ 0.25, the two profiles virtually coincide. Such results show that pseudo-
steady approximation is an accurate algorithm whenkon is large. Moreover, it is efficient
because the fast time scale has been filtered off.
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In the following sections we use our algorithm to study the effect of a mobile buffer on cal-
cium waves assuming calcium buffering is fast enough for the pseudo-steady approximation
be applicable.

3. BUFFERED TRAVELING WAVES IN ONE-VARIABLE BISTABLE MODELS

We start our application with very simple one-variable bistable models described by
Eq. (1.1) wheref is a function of one variable,f (c), that typically behaves as shown in
Fig. 2a. It is important for bistability thatf (c) has three zerosCmin<C0<Cmax, which in
the absence of diffusion would correspond to the concentration values in two stable steady
states separated by an unstable steady state. In physiological applications the system usually
rests at a steady state with lower concentrationCmin. Thus, to excite the system, we have to
overcome the concentration barrierC0−Cmin. Therefore, the position of the unstable steady
state concentrationC0 with respect toCmin andCmaxcharacterizes the system excitability. In
the presence of diffusion, bistable models are known to allow for the solutions of a traveling
wave typec(x+ vt)= c(ξ) with a constant wave speedv [14, 21] (a wave with positive
wave speedv travels to the left).

We consider two models: one employs a piecewise linear functionf (a PL model), and the
other uses a cubic polynomial (a CP model) [14, 16, 17]. Both the high and low excitability
regimes in each model are studied. In the absence of buffers, both models admit exact
analytical solutions with explicit wave speeds. There are also some formal asymptotic results
available for fast-buffered traveling waves in one-variable bistable models, which allow us
to assess the accuracy of our numerics. Thus, we pursue two goals when applying our
numerical approach to the oversimplified one-variable models. First, we validate, whenever

FIG. 2. (a) Typical shape of the functionf in one-variable bistable models. (b) Typical traveling wave profile
in one-variable models.
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possible, our algorithm against exact analytical results, and second, we verify predictions
based on our theoretical analysis.

3.1. Theoretical predictions.The function f in the PL model is described by the equa-
tion

f (c) = J0θ(c− C0)− 0(c− Cmin), (3.1)

whereθ is a step function with

θ(x) =
{

1 if x≥ 0
0 if x< 0.

The first term on the right hand side of Eq. (3.1) is the rate of calcium release from the
internal stores through calcium channels [17]. Here,J0 denotes the amplitude of this rate
andC0 is the threshold calcium concentration above which the channels get activated. The
second term on the right hand side of Eq. (3.1) describes the rate of calcium uptake back into
internal stores due to calcium pumps. This rate is assumed to be linear with respect to current
calcium concentration in the PL model. Obviously, in this modelCmax= J0/0+Cmin. The
traveling wave speed in the PL model is

v0 =
√

J0Dc

C0− Cmin

1− 2ρ√
1− ρ , whereρ = 0

J0
(C0− Cmin). (3.2)

In the CP model

f (c) = J0

C3
max

(c− Cmin)(c− C0)(Cmax− c), (3.3)

and the wave speed is

v0 =
√

J0Dc

2Cmax

Cmax− 2C0+ Cmin

Cmax
. (3.4)

In the presence of a mobile buffer, the system is governed by Eqs. (1.3). One can prove
that this system also has a unique monotone traveling wave solution connecting two stable
steady states and a unique wave speed [22, Theorem 2.1, p. 15]. In the limit of fast buffering,
one can derive an asymptotic wave speed (see Appendix B)

v =
(∫ Cmax

Cmin

f (c)

(
1+ Dbbt K

Dc(K + c)2

)
dc

)
×
(∫ ∞
−∞

(
1+ bt K

(K + c)2

)(
1+ Dbbt K

Dc(K + c)2

)(
dc

dξ

)2

dξ

)−1

. (3.5)

In the limit of low buffer affinity K/CmaxÀ 1, as shown in Appendix B, this equation
reduces to a well known expression for the wave speed [16, 17],

v = v0

(
1+ Dbbt

DcK

)1/2(
1+ bt

K

)−1

, (3.6)
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wherev0 is the speed of a wave in the absence of buffering. In addition to direct wave
speed measurements described in the next subsection, Eq. (3.5) provides an alternate way
of determining the wave speed from simulation results.

Although Eq. (3.5) is not explicit, we can get some important insights by analyzing it.
Defineγ ≡ Dbbt/Dc. Let us fixCmin andCmax and vary the system excitability by changing
C0. To emphasize this fact, we writef (c)≡ f (c,C0). Then from Eq. (3.5), the sign of the
wave speed (and, consequently, the condition for the existence of the traveling wave with
the domination of the higher steady state concentration) is determined by the sign of the
integral

V ≡
∫ Cmax

Cmin

f (c,C0)

(
1+ γ K

(K + c)2

)
dc, (3.7)

which depends both on system excitability and buffer characteristics. This is in agreement
with the result of [16] obtained by means of a particular nonlinear transformation. We
further define

G(C0) ≡
∫ Cmax

Cmin

f (c,C0) dc, H(C0, K ) ≡
∫ Cmax

Cmin

f (c,C0)

(K + c)2
dc.

Since it is easy to check for the PL and CP models that∂ f/∂C0< 0, hence∂G/∂C0< 0
and∂H/∂C0< 0. Then there are unique values ofC0, c̄, andc̃= c̃(K ), such thatG(c̄)= 0
andH(c̃, K )= 0. SinceH(c̄, K )<0, thenc̃∈ (Cmin, c̄) andc̃ tends toc̄ asK increases.

We now fixK and consider anyC0∈ (Cmin, c̃] (high excitability regime); then the integral
(3.7) is positive irrespective of the value ofγ . In other words, the traveling wave speed is
always positive no matter what total buffer concentration we introduce and how large its
diffusion coefficient is, as long as the system excitability is sufficiently high. On the other
hand, whenC0∈ (c̃, c̄) (the low excitability regime), there is a threshold value ofγ ,

γC0 ≡ −
1

K

G(C0)

H(C0, K )
, (3.8)

such that forγ >γC0, there are no traveling waves with positive speeds. IfC0≥ c̄, wave
speed is negative (the lower steady state concentration dominates) for any combination of
buffer parameters.

Finally, it is interesting to note that the dependence of the numerator in Eq. (3.5),V , on
Db is drastically different in regions of the high and low excitability: forC0< c̃ the wave
speedV is positive and∂V/∂Db> 0, while forC0∈ (c̃, c̄), ∂V/∂Db< 0. Thus, in situations
when the numerator of Eq. (3.5) plays a dominant role in determining the wave speed, an
increase of the buffer diffusion coefficient may speed up or reduce the wave velocity in the
high and low excitability modes, respectively. In the low affinity limitK/Cmax→∞, when
the low excitability region is disappearing becausec̃→ c̄, we expect the wave speed to be an
increasing function ofDb for anyC0∈ (Cmin, c̄), in accordance with Eq. (3.6). However, in
the case of a high affinity buffer and low system excitability (C0∈ (c̃, c̄)), this dependence
might be the reverse. In this case, the growth ofDb will lead to a pointγ = γC0 at which the
traveling wave with a positive wave speed ceases to exist. Our numerical results presented
below confirm such a conclusion.
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3.2. Numerical results. We first describe our choice of the parameter values employed
in the PL and CP models. The calcium diffusion coefficient in the cytoplasm,Dc, is thought
to be 3–4 times smaller than in water and estimated as 220µm2/s [23]. But because of the
endogenous buffers that are always present in a cell, the effective calcium diffusion can
be 10–50 times slower. Since the endogenous buffers compete for calcium with exogenous
(added) buffers, one should explicitly introduce both types of buffers in the simulation. We
use this approach in our three-dimensional (3D) simulations of fertilization calcium waves
(see Section 5). In this section, however, it is beneficial to keep models simple in order to
facilitate comparison with the exact results. Therefore, in our one-dimensional (1D) sim-
ulations we assume the reduced effective calcium diffusion coefficientDc= 22µm2/s to
account for the effect of endogenous buffers and explicitly introduce only one mobile ex-
ogenous buffer into a system. In the physiological range, the maximal calcium concentration
is of the order of 1–2µM and the wave speed is in the range of 1–20µm/s.

The parameter values that we use in simulations satisfy these constraints. In the PL model
we useCmin= 0.05µM, J0= 1.5µM/s, and0= 1.0 s−1, which yieldCmax= 1.55µM. As
we mentioned above, we will consider two different levels of system excitability, relatively
high excitability atC0= 0.15µM and relatively low excitability atC0= 0.55µM. It follows
then from Eq. (3.2) that

v0,exact=
{

16.2964µm/s atC0 = 0.15µM (high excitability)
3.3166µm/s atC0 = 0.55µM (low excitability).

(3.9)

In the CP model we useCmin= 0, Cmax= 1.0 µM, J0= 20µM/s and assign the values
of 0.1 and 0.4 µM to C0 for the high and low excitability, respectively. For this set of
parameters Eq. (3.4) yields

v0,exact=
{

11.8659µm/s atC0 = 0.1µM (high excitability)
2.9665µm/s atC0 = 0.4µM (low excitability).

(3.10)

In most simulations, we use a step function as initial calcium distribution,

c(x, 0) =
{

Cmax, x ≤ 0

Cmin, x > 0,

and a buffer being initially in equilibrium with calcium; in some PL model simulations,
however, we initiated the wave by a calcium spike of a Gaussian form. In these numerical
experiments, by the time the concentration behind the wave front approaches its steady state
value, the wave has practically settled in its traveling wave profile.

To measure the speed of a simulated traveling wave after the transient dies down, we
evaluate the average velocity of the point with the same prescribed concentration over a
certain time. The coordinate of the point at the end of the time period is determined by means
of interpolation. The interpolation error introduced in the wave speed measurement can be
suppressed by taking the average over several measurements. In our practical implementa-
tion we repeated measurements by varying time and locations on the wave front until the
standard error becomes less than 1%. The measured speed should be time independent, and
the same for any prescribed concentration that we pick. These requirements serve as a check
whether the wave has settled down or not. In order to compare with the exact wave speed,
we have to take a sufficiently large computational domain to ensure that the boundaries of
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the computational domain, where we impose zero flux boundary conditions, do not affect
the traveling wave. In some cases this requirement leads to a rather large computational
domain.

Taking all the precautions described above, we first perform experiments for cases without
buffers. A trade off between accuracy and reasonable time of computation was achieved at
the mesh size1x= 0.2 µm and the time step1t = 1 ms with up to 5000 mesh points in
the domain and the simulated time in the range of 15–200 s. The numerical results obtained
with these discretization parameters are as follows. For the PL model,

v0,num=
{

16.1763µm/s atC0 = 0.15µM (high excitability)

3.2859µm/s atC0 = 0.55µM (low excitability),
(3.11)

and for the CP model,

v0,num=
{

11.8292µm/s atC0 = 0.1µM (high excitability)

2.9641µm/s atC0 = 0.4µM (low excitability).
(3.12)

Comparing such wave speeds with the exact values in (3.9) and (3.10), we conclude that
the numerical results are accurate within 1%. It is also not surprising to find that the PL
model simulation is not as accurate because the function (3.1) employed in this model is
not continuous.

We use similar discretization parameters to simulate systems in the presence of buffers.
In this case we check our numerical results against (i) the asymptotic solution (3.6) in the
low affinity limit, (ii) the critical value (3.8) at which the wave speed becomes zero, and
(iii) we use the wave speed (3.5) to double check results in the general circumstances. All
the tests indicate that the numerical results we present below are accurate to within 2% of
the theoretical values.

We first consider the high excitability mode and vary buffer affinity at a fixed buffer
diffusion coefficientDb= 10µm2/s. The plots of the normalized speedv/v0 vs the binding
ratio bt/K are shown in Fig. 3. Both the PL and CP models exhibit qualitatively similar
behavior. The solid lines represent the exact dependencies (3.6) in the low affinity limit
K/Cmax=∞. As expected, the numerical points atK = 100µM follow closely the theo-
retical curve of the low affinity limit. (Recall thatCmax are 1.55µM and 1µM in the PL and
CP model, respectively.) Somewhat surprisingly, the low affinity limit also provides a good
approximation forK = 1µM. However, the results in the high affinity case,K = 0.1µM,
deviate significantly from Eq. (3.6). Thus, the hypothesis made in [16, p. 118], that when
K is small the speed of the traveling wave can still be approximated by Eq. (3.6), does not
hold even in the case of high excitability (Eq. (3.5), however, holds). In the case of low
excitability, such a claim produces an even more erroneous result, because the wave speed
from (3.6) is always positive. In reality, as we have seen in Subsection 3.1 and demonstrated
by numerics later on, at some parameter sets the wave speed can become negative.

Next, we keep the buffer affinity high (K = 0.1 µM) and vary the excitability. In the
low excitability regime in both models there is a threshold buffer concentrationbt,c above
which there exists no traveling wave with the dominating high steady state concentration.
The theoretically predicted values (see Eq. (3.8)) for the sets of parameters employed,
bt,c= 18.29µM for the PL model andbt,c= 0.7154µM for the CP model, are in excellent
agreement with the numerical results (see Figs. 4a and 4b). It is clear from both figures that
if we continuously increase system excitability, there will be a threshold above which the
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FIG. 3. Normalized wave speed vs buffer binding ratio for varying buffer affinity in the high excitability mode
for Db= 10µm2/s. (a) PL model; (b) CP model.

wave with the dominating high concentration exists no matter how aggressive the buffer
characteristics are. This conclusion is also consistent with the theoretical predictions.

It is interesting to note that the solutionc(ξ) for the zero wave velocity has a wave-like
profile (see Fig. 2b). This means that a bistable system allows for a spatially non-uniform
steady state with non-zero calcium fluxes, production, and consumption at the wave front
(of course, this is also true in the absence of buffers). Physically, this is possible only if there
are permanent sources of energy necessary for calcium pumping. Above the critical buffer
concentration, a traveling wave with the dominating low steady state concentration exists.
In other words, it moves in the opposite direction, or has a negative speed. It is interesting to
see how the absolute value of speed will change if we further increase buffer concentration.
Figure 5 shows that after the initial increase, it goes down. From the physiological point
of view, the wave becomes self-extinguishing above the critical buffer concentration and
cannot be initiated by a calcium spike over the uniform steady state with low calcium
concentrationCmin.

Finally, we study the change in wave speed behavior with respect to the buffer diffusion
coefficient at varying excitability. As one might expect from the theoretical analysis in
Subsection 3.1, the results presented in Fig. 6 indicate that for a fixed buffer affinity, a larger
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FIG. 4. Normalized wave speed vs buffer binding ratio for varying excitability in the case of a high affinity
buffer, K = 0.1µM, for Db= 50µm2/s. (a) PL model; (b) CP model.

FIG. 5. Normalized wave speed vs buffer binding ratio for larger concentrations of a high affinity buffer in
the CP model,K = 0.1µM, Db= 50µm2/s.
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FIG. 6. Normalized wave speed vs buffer binding ratio for varying system excitability and buffer diffusion in
the CP model atK = 0.1µM.

diffusion coefficient leads to a faster wave in the regime of high excitability, but the wave
will be slower in the low excitability mode. In fact, with increasingDb (at a fixed total buffer
concentration), the wave slows down to zero speed at some critical value ofDb, when the
wave ceases to exist physiologically.

Overall, as one would expect, adding a buffer slows down the wave speed in all numerical
experiments. This is because calcium buffering leads to an effective decrease in both calcium
release from channels and calcium diffusion [17].

4. BUFFERED TRAVELING WAVES IN A TWO-VARIABLE MODEL

In this section we study the effect of a rapid mobile buffer on traveling calcium waves
in a more realistic two-variable model of calcium dynamics. This is a simplified Li–Rinzel
model [24] which has been successfully applied in the studies of the calcium dynamics
[3, 15, 25]. It is based on the detailed eight-state De Young–Keizer model of a (InsP3)-
sensitive calcium channel [26]. This channel consists of four subunits, each with binding
sites for InsP3 and Ca2+. Calcium flux through the channel is regulated by InsP3 and Ca2+

binding to these sites. In this paper we assume for simplicity that the InsP3 concentration is
constant so that it does not enter the governing equations. This simplification is appropriate
in certain experimental conditions [11, 15], although the complete model should include
the dynamics of InsP3 [3, 4, 11]. According to the De Young–Keizer model, each of the four
channel subunits has two Ca2+ binding sites; one activates the channel and the other inhibits
it. It is further assumed that, for a channel to be open, three of the four subunits should
have a bound activation site and a free inhibition site. The simplification made in [24] takes
advantage of the fact that both the InsP3 binding and the Ca2+ binding to the activation site
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are much faster than the Ca2+ binding to the inhibition site. Thus, calcium binding to the
inhibition site is the only slow process in the channel kinetics in the Li–Rinzel model.

In the absence of a mobile buffer, the model contains two variables: the calcium concen-
tration,c, and the probabilityh that the inhibition site is free of calcium. These variables
are governed by the equations

∂c

∂t
= Dc∇2c+ f (c, h),

(4.1)
∂h

∂t
= g(c, h),

where

f (c, h) = J0

(
ch

c+ dact

)3

− Vm
c2

c2+ K 2
p

+ L (4.2)

g(c, h) = kon (dinh− (dinh+ c)h) . (4.3)

The first term in (4.2) describes the rate of calcium release from a channel with an amplitude
J0 and a dissociation constant for the activation binding sitedact. The second term is the rate
of calcium uptake through pumps with a maximal valueVm and a dissociation constantK p

for the calcium binding to a pump. The model also accounts for the constant leak of calcium,
with rate L, from the internal stores to the cytoplasm. Equation (4.3) describes calcium
binding to the inhibition sites, with a rate constantkon and a dissociation constantdinh.

For some parameter sets, the model is bistable [15]. Although the simple analysis of the
previous section, which is valid for one-variable bistable models, does not apply in this case,
it is likely that the relative location of steady state concentrations (for Eqs. (4.1) without
diffusion) may still control the system excitability. Thus, we again consider two modes
when the unstable steady state concentrationC0 is close to and far from the low steady
state calcium concentrationCmin. In analogy with the previous section, we will call them
the modes of high and low excitability, respectively. The corresponding sets of parameter
values and the steady state concentrations are documented in Table II and the resulting
nullclines with f (c, h)= 0 andg(c, h)= 0 are plotted in Fig. 7.

TABLE II

Parameter Sets Providing Bistability of the Li–Rinzel Model

with High and Low Excitability

Parameter Units High excitability Low excitability

J0 µM s−1 100 110
dact µM 0.7 0.7
Vm µM s−1 1.0 1.0
K p µM 0.25 0.1
L µM s−1 0.0151 0.1755
kon (µM)−1 s−1 4.0 4.0
dinh µM 0.6 0.5
Cmin µM 0.05 0.05
C0 µM 0.1 0.3
Cmax µM 1.187 1.022
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FIG. 7. Nullclines of the Li–Rinzel model for the cases of high (a) and low (b) excitability.

With a larger set of parameters being involved in the model, there are various ways of
changing system excitability. In particular, one can vary the relative positions of the steady
state calcium concentrations with little effect on the wave speed. This is in contrast to
the one-variable models where a change from high to low excitability automatically leads
to a decrease in the wave speed, as can be seen from Eqs. (3.2) and (3.4). As seen from
Table II, we can now switch the system from high to low excitability by increasing the
pump affinity and channel inhibition site affinity to calcium, while keeping the parameters
J0 anddact (that control the wave speed [17]) essentially the same. (As a consequence, there
is also a considerable change in the leak constant to maintain the flux balance at the low
steady state with a fixedCmin= 0.05µM.) As a result, we get similar wave speed values:
v0= 16.41µm/s for the high excitability mode, andv0= 15.80µm/s for the low excitability
mode, as opposed to the results (3.9), (3.10) obtained for the one-variable models. However,
in the presence of a mobile buffer, the system with low excitability turns out to be “reluctant”
in maintaining fast stable traveling waves. As the total buffer concentration increases, the
system undergoes a discontinuous “phase” transition to the states with slow stable traveling
waves (see Fig. 10 and discussion at the end of the section).

In the numerics above, we have used a step function for the initial calcium concentration,
while the initial conditions forh are determined fromg(c(x, 0), h)= 0. Zero flux boundary
conditions forc are imposed. As in the earlier sections, we observe numerical convergence
upon decreasing mesh sizes and time steps. The accuracy is within 1% error when1t = 1 ms
and1x= 0.25µm, with 4000–4500 points in the computational domain.
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We use similar discretization parameters to simulate the system in the presence of a
buffer. In this case the resulting set of equations becomes

∂c

∂t
= Dc∇2c+ f (c, h)+ R (4.4)

∂h

∂t
= g(c, h), (4.5)

∂b

∂t
= Db∇2b− R (4.6)

with R from Eq. (1.3c). We again assume fast buffering. The wave speed (3.5), which now
takes the form

v =
(∫ ∞
−∞

(
1+ Db

Dc

∂b

∂c

)
f (c(ξ), h(ξ))

dc

dξ
dξ

)

×
(∫ ∞
−∞

(
1+ ∂b

∂c

)(
1+ Db

Dc

∂b

∂c

)(
dc

dξ

)2

dξ

)−1

(4.7)

with ∂b/∂c= bt K/(c(ξ)+ K )2, is used to double check the results for the wave speed.
Overall, we estimate that the results we present below are accurate within 2%.

First, we consider the high excitability mode with varying buffer affinity for a fixed buffer
diffusion coefficient. The low affinity limit Eq. (3.6) for one-variable models does not apply
in the multivariable case; however, considering the wave speed atK = 100µM in the two-
variable model as a low affinity limit, we obtain the results presented in Fig. 8, which are
qualitatively similar to those for the one-variable models (Figs. 3a, 3b).

Next, we study how the wave speed will be affected by the high affinity buffers with var-
ious diffusion coefficients. Similar to the one-variable models, this effect strongly depends
on the system excitability. Numerical results in Fig. 9 show the dependencies of the wave

FIG. 8. Normalized wave speed vs buffer binding ratio for varying buffer affinity in the high excitability mode
of the Li–Rinzel model (Db= 10µm2/s).
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FIG. 9. Wave speed dependencies on the total concentration of a high affinity buffer (K = 0.1µM) at varying
buffer diffusion coefficient in the high excitability mode of the Li–Rinzel model.

speed on the total buffer concentration at varying buffer diffusion coefficients in the high
excitability mode. As in the one-variable models (compare to the two upper plots in Fig. 6
for the CP model), the wave speed increases with the buffer diffusion coefficient and will
never become negative. As for the low excitability mode, referring to the numerical results
in Fig. 10, we see that the wave speed decreases with the buffer diffusion coefficient at a
fixed total buffer concentration. When the total buffer concentration exceeds a critical level,
the wave speed becomes negative as in the one-variable models.

In this case, however, with increasing total buffer concentration, we observe a sudden
drop of wave speed preceding the change in the wave direction (Fig. 10). Forbt fixed close
to, and to the right of, the sharp transition, the wave speed gradually decreases in time

FIG. 10. Wave speed dependencies on the total concentration of a high affinity buffer (K = 0.1µM) at varying
buffer diffusion coefficient in the low excitability mode of the Li–Rinzel model.



208 SLEPCHENKO, SCHAFF, AND CHOI

FIG. 11. Hysteresis loop in the wave speed dependence on the total buffer concentration in the low excitability
mode of the Li–Rinzel model, atK = 0.1µM and Db= 50µm2/s.

from high to low values while the wave is settling in its stable profile. Thus, there is a
finite interval of wave speed values for which no stable traveling wave exists. If we start
with a wave profile, corresponding to a high total buffer concentration, and then gradually
decrease the buffer concentration in our numerics, the jump occurs at a lower critical value.
Thus, we observe a typical hysteresis loop presented in Fig. 11, which can be regarded as
a magnified picture of the middle curve in Fig. 10 near its discontinuous jump. Thus, for
a fixed buffer diffusion coefficient, there are at least two stable traveling waves with very
different velocities when the total buffer concentration lies in a certain interval. Since we use
an initial value problem solver to track down a traveling wave, only stable traveling waves
are accounted for in Figs. 10 and 11. We expect the full picture to be a reverseS−curve
as depicted in Fig. 12, with bifurcation occurring when we cross the limit pointsA1 and

FIG. 12. A full reverse S-curve with the unstable branchA1 A2.
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A2. Because the middle branch in the reverseS−curve usually corresponds to the unstable
traveling waves, a continuation algorithm [27] has to be employed to trace the full response
curve.

When the total buffer concentration is such that there are two stable traveling waves,
each of the two stable branches has its own domain of attraction. Initial conditions that
are close to one of the stable wave profiles will usually be attracted to it. If we push the
total buffer concentration beyond the limit points (say, we start with the wave that be-
longs to the fast branch and then increase the buffer concentration to the value for which
there exists only one stable wave on the slow branch), since now there is only one stable
traveling wave, a large change in the wave speed has to take place to settle down into
the stable wave profile. Such a discontinuous change is a hallmark of a bifurcation tak-
ing place in the system. No similar phenomenon has been observed in the one-variable
models.

Finally, we note that as in the one-variable models, the wave speed decreases with the
total buffer concentration.

5. THE 3D SIMULATIONS OF FERTILIZATION CALCIUM WAVES

It was recently suggested [15] that bistability is essential for the fertilization calcium
waves experimentally observed in eggs after sperm fusion [28]. The calcium dynamics in
living cells is visualized by injecting a fluorescent indicator that has calcium binding sites.
When calcium binds to a binding site, it modifies fluorescent properties of the indicator, and
the recorded changes in fluorescence closely follow the dynamics of the indicator bound
form. Thus, a fluorescent indicator acts as a calcium buffer, in addition to the endogenous
buffers (the proteins with calcium binding sites) that are always present in a cell. The
fluorescent indicators usually used in biological experiments (e.g., fura-2 and Calcium
Green [29]) have properties of fast, high affinity mobile buffers, and, as we saw in the
previous sections, can significantly influence the properties of calcium waves. It is important
to note that experimentally observed fertilization calcium waves are not traveling plane
waves. They are transient processes initiated by a localized spike-like perturbation in a
finite domain constrained by a cell membrane.

The Virtual Cell framework, within which we have developed the capability of treating
fast reactions, allows us to run three-dimensional simulations using realistic geometry and
realistic initial and boundary conditions. For example, our simulations of calcium waves in
neuroblastoma cells [3, 4] use the geometry derived directly from experimental microscope
images. In this section, we simulate fertilization calcium waves in a spherical cell (an egg)
with a diameter of 50µm using the Li–Rinzel model (see Eqs. (4.1)). A physiologically
reasonable set of parameters given in Table III provides system bistability in the high
excitability mode. We introduce two types of buffers in our 3D simulations. The immobile
low affinity buffer, with a dissociation constantK1= 10µM and a total concentration
bt,1= 200µM, represents endogenous buffers, while the mobile high affinity buffer, with
a diffusion coefficientDb= 50µm2/s and a dissociation constantK2= 0.24µM, mimics
fura-2. We will vary the total concentrationbt,2 of the mobile buffer in our numerical
experiments. Letb1 andb2 be the concentrations of the bound forms of the endogenous
buffer and the fluorescent indicator, respectively. Withc andh as defined in the previous
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TABLE III

Parameter Values Used for the Li–Rinzel Model in 3D

Simulations of the Fertilization Calcium Waves

Parameter Units Value

J0 µM s−1 1000
dact µM 0.7
dinh µM 0.6
kon (µM)−1 s−1 2.0
Vm µM s−1 10
K p µM 0.25
L µM s−1 1.51× 10−2

bt,1 µM 200
K1 µM 10
K2 µM 0.24
Dc (µm)2 s−1 220

section, the governing set of equations is

∂c

∂t
= Dc∇2c+ f (c, h)+ R1+ R2,

∂h

∂t
= g(c, h),

∂b1

∂t
= −R1, (5.1)

∂b2

∂t
= Db∇2b2− R2,

with R1=−kon,1(bt,1 − b1)c+ koff,1b1 and R2=−kon,2(bt,2 − b2)c+ koff,2b2. Herekon,1,
kon,2, koff,1, andkoff,2 are the buffering kinetic constants. Assuming fast buffering, we apply
our approach and perform time splitting and pseudo-steady approximation. After that, the
system (5.1) reduces to a “slow” subsystem,

∂c

∂t
= Dc∇2c+ f (c, h),

∂h

∂t
= g(c, h), (5.2)

∂b2

∂t
= Db∇2b2,

a “fast” subsystem, consisting of a “fast” invariant (see (2.6)),

c+ b1+ b2= I , (5.3)

and a set of nonlinear algebraic equations,

c(bt,1− b1) = K1b1,

c(bt,2− b2) = K2b2,
(5.4)
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whereKi ≡ koff,i /kon,i , i = 1, 2. We then numerically solve Eqs. (5.2)–(5.4) using our two-
step algorithm as described in Section 2.

We initiate a wave by a calcium spike localized near the cell membrane. The spike is
centered at the membrane and has a radius of 5µm and an amplitude of 30µM. The initial
conditions forh are determined as in the previous section. Both buffers are initially in
equilibrium with calcium. Assuming that the calcium fluxes across the cell membrane can
be ignored in this problem (see discussion in [15]), we use the zero flux boundary conditions.
To reduce the time of computation, we take advantage of the rotational symmetry in the
problem and perform calculations only in a quarter of the sphere. The discretization that we
employ is1x=1y=1z= 0.65µm (this mesh size results in 136,161 mesh points) and
1t = 0.001 s. We estimate that the results are accurate to within 5%.

We run simulations with varying total concentrationsbt,2. The results show a strong effect
of the fluorescent indicator on wave formation. The indicator (the mobile buffer) usually
causes a delay in the wave formation and can even prevent a wave if the total concentration

FIG. 13. Simulation of a fertilization calcium wave in the presence of a (9.5µM) high affinity indicator
(K = 0.24µM) for two different values of the indicator diffusion coefficient,Db= 10µm2/s (left column) and
Db= 50µm2/s (right column). Images of the equatorial slice of an egg are accompanied with a line scan along
the cell diameter that coincides with the symmetry axis. Fertilization is initiated at the left pole of the sphere.
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FIG. 14. Calcium wave in the presence of the fluorescent indicator fura-2 (K = 0.24µM, Db= 50µm2/s, and
bt = 9.5µM) (left column), as compared to the dynamics of the indicator-bound calcium that mimics the behavior
of the fluorescence intensity (right column). Images of the equatorial slice of an egg are accompanied with a line
scan along the cell diameter that coincides with the symmetry axis. Fertilization is initiated at the left pole of the
sphere.

of a mobile buffer rises above a certain threshold for the given initial conditions. For our
parameter set, this critical concentration is found to be approximately 11µM.

We next fix the total concentration of the mobile buffer atbt,2= 9.5µM and simulate
wave propagation at two different buffer diffusion coefficients. The simulation results are
presented in Fig. 13. It shows that the buffer with a higher diffusion coefficient causes a
significant delay in wave formation. However, once initiated, the wave propagates faster
with the higher buffer diffusion coefficient, in agreement with the results for traveling waves
in systems with high excitability. Thus, when comparing the effect of buffers with different
diffusion coefficients, we note two opposite roles a mobile buffer plays in wave propagation
in the system with high excitability. The buffer with a higher diffusion coefficient slows
down the process of wave formation, but then after a wave has been formed, makes it
propagate faster. Overall, in the case of a small cell size, it takes longer for a wave to
propagate throughout the cell in the presence of a more diffusive buffer even in the mode
of high excitability.
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FIG. 15. Simulation of a fertilization calcium wave in the presence of fura-2 (K = 0.24µM, Db= 50µm2/s,
andbt = 9.5µM) (left column), and in the absence of a fluorescent indicator (right column). Images of the equatorial
slice of an egg are accompanied with a line scan along the cell diameter that coincides with the symmetry axis.
Fertilization is initiated at the left pole of the sphere.

In biological experiments, one directly measures the fluorescence intensity which cor-
relates well with the bound buffer dynamics. In Fig. 14 we compare the dynamics of the
bound form of fura-2 (which will be close to that of fluorescence intensity) with the actual
dynamics of free calcium in the presence of the indicator. It illustrates a nonlinear relation-
ship between the two dynamics. Thus, care has to be exercised in extracting the calcium
dynamics from the experimentally measured fluorescence intensity [30].

Finally, the calcium waves in the presence of a moderate amount of fura-2 and without
it are compared in Fig. 15. The fluorescent indicator strongly interacts with the initiating
spike and substantially slows down the wave. Thus, even if the calcium dynamics is cor-
rectly extracted from the fluorescent intensity, it can still differ significantly from the actual
situation without an indicator.

CONCLUSIONS

We have developed within the Virtual Cell framework a general numerical algorithm that
performs a pseudo-steady approximation for multicomponent reaction-diffusion systems
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containing fast and slow processes. The algorithm is based on time splitting and uses
stoichiometry analysis of the reaction network.

The application of the algorithm to studying the effect of calcium buffering on calcium
waves in bistable systems indicates that this effect can be drastically different depending on
the buffer affinity and the system excitability. In systems with low excitability, the mobile
buffers can stop the traveling wave and even reverse its direction, i.e., cause it to become
self-annihilating, from the physiological point of view. In a more realistic two-variable
model, the change in the wave direction can be preceded by a discontinuous transition
(bifurcation) from states with fast traveling waves to states with slow ones, as the total
buffer concentration increases. For some interval of parameter values, there may exist two
stable traveling waves with very different velocities.

Three-dimensional simulations using realistic geometry and initial conditions show a
strong effect of a fluorescent indicator on fertilization calcium waves. A more diffusive
buffer causes a longer delay in wave formation and, at sufficient concentration, can prevent
a wave. However, once a wave is initiated, it travels faster in the presence of a more diffusive
buffer in a system with high excitability.

APPENDIX A

In this appendix, we prove that the solution to Eqs. (2.6) and (2.8) is independent of the
choice of the matrixA, so long as its lastn− r columns are composed of{l1, . . . , ln−r } and
it is non-singular.

Let A1 andA2 be two different choices of the non-singular matrixA. After pseudo-steady
approximation, we have Eqs. (2.6) and (2.8). These are equivalent to the system

B AT
i

∂u
∂t
= AT

i α
( f )Eν, i = 1, 2, (A.1)

where then× n matrix B is given by

B ≡
(

0 0
0 In−r

)
. (A.2)

Here theIn−r is the(n− r )× (n− r ) identity matrix, and different zeros represent different
zero matrices of suitable dimensions.

Since the lastn− r columns ofAi have to be{l1, . . . , ln−r }, there exists an× n matrix

C ≡
(

C1 0

C2 In−r

)
(A.3)

with C1 andC2 being suitable sized matrices, such that

A2= A1C. (A.4)

Because bothA1 and A2 are non-singular,C has to be non-singular. This makesC1 a
non-singularr × r matrix. It is then easy to check that

C−1=
(

C−1
1 0

−C2C−1
1 In−r

)
. (A.5)
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Now using Eqs. (A.1) fori = 2 and Eq. (A.4), we have

(CT )−1BCT AT
1
∂u
∂t
= AT

1 α
( f )Eν. (A.6)

Note that(CT )−1= (C−1)T . A simple calculation then shows that

(CT )−1BCT =
(

0 −C2C−1
1

0 In−r

)
. (A.7)

The last(n− r ) equations in (A.6) are equivalent to∂
∂t (l i · u)= 0, i = 1, . . . ,n− r . Thus

there is no effect due to the matrixC2C−1
1 , and the left hand sides of the firstr equations in

(A.6) are zero. In other words, the solution of (A.1) fori = 2 is the same as the solution of
(A.1) for i = 1. The proof is therefore complete.

APPENDIX B

In this appendix, we first derive Eq. (3.5) and then show that it reduces to Eq. (3.6) in the
low buffer affinity limit.

In the absence of buffering, a one-variable bistable model is described by the equation

∂c

∂t
= Dc∇2c+ f (c), (B.1)

which is a particular case of Eq. (1.1) with the functionf (c) having bistable properties as
shown in Fig. 2a. Equation (B.1) is known to allow for the solutions of a traveling wave type
c(x+ vt)= c(ξ) with a constant wave speedv [14, 21]. The wave shape therefore satisfies

vcξ = Dccξξ + f (c), (B.2)

and boundary conditionsc(−∞)=Cmin, c(+∞)=Cmax. Multiplying Eq. (B.2) bycξ and
integrating from−∞ to+∞, we derive a general expression for the wave speed

v=
(∫ Cmax

Cmin

f (c) dc

)(∫ ∞
−∞

(
dc

dξ

)2

dξ

)−1

. (B.3)

Simple dimensional analysis of Eq. (B.1) shows that if we scale the reaction termf (c) by
a factor ofα the wave speed will change∝ α1/2. It then follows from Eq. (B.3) that the
integral ∫ ∞

−∞

(
dc

dξ

)2

dξ (B.4)

will also change asα1/2. On the other hand, if we scale the whole right hand side of Eq. (B.1)
by a factor ofβ then the wave speed changes∝ β and the integral (B.4) remains unchanged.

In the presence of a mobile buffer the system is governed by Eqs. (1.3) with the same
function f . According to [22, Theorem 2.1, p. 15], there exist monotone traveling wave
solutions connecting two stable steady states and a unique wave speed. For solutions of
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this type,c(x + vt)= c(ξ), b(x + vt)= b(ξ), their wave profiles are now governed by the
equations

vcξ = Dccξξ + f (c)+ R, (B.5)

vbξ = Dbbξξ − R. (B.6)

For this case, one can also derive the general expression for the wave speed, somewhat
analogous to Eq. (B.3). To do that, we sum up Eqs. (B.5) and (B.6) thus excludingR, and
considerb(ξ)= b(c(ξ)) (we have used the symbolb for two different functions). Then

bξ = ∂b

∂c
cξ , bξξ = ∂

∂ξ

(
∂b

∂c
cξ

)
, (B.7)

and

v

(
1+ ∂b

∂c

)
cξ = Dccξξ + Db

∂

∂ξ

(
∂b

∂c
cξ

)
+ f (c). (B.8)

Multiplying Eq. (B.8) bycξ and integrating from−∞ to+∞, we obtain

v

∫ +∞
−∞

(
1+ ∂b

∂c

)
c2
ξ dξ = Db

∫ +∞
−∞

∂

∂ξ

(
∂b

∂c
cξ

)
dξ +

∫ Cmax

Cmin

f (c) dc

= −Db

∫ +∞
−∞

∂b

∂c
cξcξξ dξ +

∫ Cmax

Cmin

f (c) dc. (B.9)

Note that so far we have made no approximations. From now on we consider the case
of fast buffering. This assumption has two consequences. First, on the “slow” time scale,
one can consider a buffer to be in a rapid equilibrium with calcium at each spatial point [5].
We thus use a pseudo-steady approximation,R= 0, to determine the functionb(c) from
Eq. (1.3c),b(c)= btc/(K + c) , where the equilibrium constantK = koff/kon characterizes
the buffer affinity to calcium. We then find

∂b

∂c
= bt K

(K + c)2
. (B.10)

Second, on the “fast” time scale, the buffer effect on calcium dynamics is due to the buffer
reaction only, because diffusion is slow. Therefore, on this time scale we getR=−vbξ
from (B.6) and then find the instantaneous distribution ofcξξ from (B.5)

cξξ = v

Dc

(
1+ ∂b

∂c

)
cξ − f (c)

Dc
. (B.11)

Since the integrals in (B.9) can be treated either as integrals over time for some fixed spatial
point (slow time scale) or, equivalently, as integrals over the spatial coordinate for some
fixed time (fast time scale), we can use both Eq. (B.10) and Eq. (B.11). Substituting them
in Eq. (B.9), we obtain Eq. (3.5) that gives a general expression for the wave speed at fast
buffering. Equation (3.5) can be easily extended to the case of multiple buffers.
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We now show that Eq. (3.5) reduces to Eq. (3.6) in the low affinity limitK/CmaxÀ 1. In
this limit, it follows from Eq. (B.10) that∂b/∂c becomes a constant:∂b/∂c= bt/K . Then
Eq. (B.8) reduces to

v

(
1+ bt

K

)
cξ =

(
Dc + Db

bt

K

)
cξξ + f (c),

which is equivalent to modifying the reaction term in the initial equation (B.1) by the factor
α= (1 + Dbbt/DcK )−1 and the entire right hand side of (B.1) by the factorβ = (1 +
bt/K )−1(1+ Dbbt/DcK ). Then, as we noted above, the integral (B.4) will change∝ α1/2,

∫ ∞
−∞

(
cξ
)2

dξ =
(

1+ Dbbt

DcK

)−1/2 ∫ ∞
−∞

(
cξ
)2

0 dξ, (B.12)

where zero index denotes the case of no buffering. Because in the low affinity limit all
internal braces in Eq. (3.5) become constants, one can easily see that this equation reduces
to Eq. (3.6), by taking into account Eqs. (B.12) and (B.3).
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